# Variational Quantum Eigensolver

## **Review of NISQ-Era Algorithms**

Niranjan Bhatia, Jenny Chen, Guy Estace, Samyak Surti

#### Outline

- NISQ-Era Quantum Devices and Algorithms
- Variational Quantum Eigensolver
- Running VQE: Hartree-Fock
- Simulating H<sub>2</sub>
- Simulating H<sub>2</sub>O
- Conclusion

#### **NISQ-Era of Quantum Devices**

- NISQ or Noisy Intermediate-Scale Quantum<sup>1</sup> is characterized by:
  - $\circ$   $\,$  Devices with 50 to few hundreds of qubits
  - $\circ \quad \text{``Noisy''} \Longrightarrow \text{Perturbations due to device environment leads to} \\ \text{inability to perfectly control qubits}$
  - Moreso a step towards practical fault-tolerant quantum computation, where proof-of-concepts arise.
- Question:
  - What are the capabilities and practical use-cases of NISQ-Era quantum devices?
  - Do they show quantum advantage?

#### NISQ-Era Algorithms and Further Considerations

- Variational Quantum Algorithms (VQA)
  - Applicable to quantum chemistry (quantum simulations, in general) and optimization problems
- Adiabatic Quantum Computing:
  - Similar applications as VQA but a completely different approach to quantum computing  $\implies$  Quantum Annealing
- Resource Estimation:
  - How many qubits do we need?
  - How many (non-Clifford) gates do we need?

#### Variational Quantum Eigensolver

- Goal: Find ground state energy of given Hamiltonian H
- Hybrid quantum-classical algorithm
- Applicable to quantum chemistry problems



Source: 1QBit

#### **Running VQE: Estimating Resources**

- # of shots (IBM default = 1024)
- # of non-Clifford gates
  - Clifford gates = I, X, Y, Z, CNOT
  - non-Clifford = Controlled phase<sup>2</sup>

- **# of qubits** required to represent Hamiltonian of the molecule
  - Max simulatable: ~20

<sup>1</sup>https://arxiv.org/pdf/2111.09967.pdf <sup>2</sup>Stancil, Principles of Superconducting Quantum Computers



### **Running VQE: Hartree-Fock<sup>1</sup>**

In our simulations, we varied

- Molecules: H2, H2O
  - # of qubits to represent Hamiltonian
- # of shots
- # of gates

#### Running VQE: Parameterized Circuit Construction

- <u>Goal</u>: Construct quantum variational circuits "to prepare fermionic states of interest"<sup>1</sup>
  - <u>Consequence</u>: Short-depth circuits
- Primary way this is achieved: **<u>Givens Rotations</u>**

$$G( heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \cos{( heta/2)} & -\sin{( heta/2)} \ \sin{( heta/2)} & \cos{( heta/2)} & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} & G^{(2)}( heta) \mid 0011 
angle = \cos{( heta/2)} \mid 0011 
angle + \sin{( heta/2)} \mid 1100 
angle \ G^2( heta) \mid 1100 
angle = \cos{( heta/2)} \mid 1100 
angle - \sin{( heta/2)} \mid 0011 
angle \ G^2( heta) \mid 1100 
angle = \cos{( heta/2)} \mid 1100 
angle - \sin{( heta/2)} \mid 0011 
angle \ Double \ Excitation \ Double$$

<sup>1</sup>https://arxiv.org/pdf/2111.09967.pdf

#### H<sub>2</sub> Resource Estimation (Pennylane)







#### Simulating H<sub>2</sub> (IBM Device)



#### Simulating H<sub>2</sub>O

Using precomputed simulation from Pennylane Database:

#### In [24]:

: 1 H2Odatasets = qml.data.load("qchem", molname="H2O", basis="STO-3G", bondlength=1.98)
2 print('fci\_energy',H2Odatasets[0].fci\_energy)
3 print('vqe\_energy',H2Odatasets[0].vqe\_energy)

fci\_energy -74.76404151230251 vqe\_energy -74.7570250805498

#### **Resource Estimation for H2O (Pennylane)**





### SRI(QED-C) Circuit Width vs Depth For VQE IBM QASM Simulator



Circuit Width:

• Number of Qubits

#### Circuit Depth:

 Number of layers of circuit

Source: IBM



Source: Lubinski, Johri, et al. 2021

#### **Future Plans**

- Run VQE on different hardwares, such as IonQ's ion trap and Xanadu's photonic quantum computers
- Test how different types of errors (e.g. bit flip, Pauli-X, depolarizing) affect the convergence rate or lack of convergence

Challenges

- # of simulatable qubits is very low ~20
- Running simulation on actual device takes a very long time
  - $\circ$  Erroneous  $\Longrightarrow$  Does not converge

#### References

https://pennylane.ai/qml/demos/tutorial\_quantum\_chemistry.html https://pennylane.ai/qml/demos/tutorial\_adaptive\_circuits.html#romero2017 https://pennylane.ai/qml/demos/tutorial\_vqe.html https://discuss.pennylane.ai/t/co2-active-electrons-orbitals/1589 https://pennylane.ai/qml/demos/tutorial\_noisy\_circuits.html https://pennylane.ai/qml/demos/tutorial\_quantum\_chemistry.html https://arxiv.org/pdf/2111.09967.pdf https://arxiv.org/pdf/2110.03137.pdf